Dissecting indices of aridity for assessing the impacts of global climate change
There is great interest in understanding how climate change will impact aridity through the interaction of precipitation changes with rising temperatures. The Aridity Index (AI), Climatic Moisture Deficit (CMD), and Climatic Moisture Surplus (CMS) are metrics commonly used to quantify and map patterns in aridity and water cycling. Here we show that these metrics have different patterns of change under future climate—based on an ensemble of nine general circulation climate models—and the different metrics are appropriate for different purposes. Based on these differences between the metrics, we propose that aridity can be dissected into three different types—hydrological (CMS), agricultural (CMD), and meteorological. In doing this, we propose a novel modified version of the Aridity Index, called AI+, that can be useful for assessing changes in meteorological aridity. The AI + is based on the same ratio between precipitation and evapotranspiration as the traditional AI, but unlike the traditional AI, the AI + only accounts for changes to precipitation during months when precipitation is less than reference/potential evapotranspiration (i.e. there is a deficit). Moreover, we show that the traditional AI provides a better estimate of change in moisture surplus driven by changes to precipitation during the wet season, rather than changes in deficit that occur during the drier seasons. These results show that it is important to select the most appropriate metric for assessing climate driven changes in aridity.
Girvetz, E. H., and C. Zganjar. 2014. Dissecting indices of aridity for assessing the impacts of global climate change. Climatic Change 126:469–483.