A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA
Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.
Flitcroft, R., K. Burnett, and K. Christiansen. 2013. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA. Environmental Management.