

Determining Landscape Connectivity and Climate Change Refugia Across the Sierra Nevada

Toni Lyn Morelli^{1,2} & Sean P. Maher^{1,5}

with Craig Moritz⁴, Steven R. Beissinger⁵, Michelle Hershey¹, Marisa Lim¹, Christina Kastely¹, Lindsey Eastman¹, Alan L. Flint³ & Lorraine E. Flint³

[1] MVZ, UC Berkeley

[2] Northeast Climate Science Center, UMass

[3] USGS, Sacramento CA

[4] RSB, ANU, Canberra

[5] ESPM, UC Berkeley

NSF

Outline

- Biological and Management Relevant Context
 - Climate Change Refugia
 - Metapopulation dynamics
 - California climate change trends
- Research Objectives
- Patterns of Connectivity in Meadows
 - How Sierra Nevada meadows have changed and will change
- Refugia Mapped
- Maps Tested Montane Mammal Data
- Implications for Management

The Role of Climate Refugia

Biogeography and conservation of taxa from remote regions: An application ecological-niche based models and GIS to North-African Canids

José C. Brito^{a,*}, André L. Acosta^a, Francisco Álvares^a, Fabrice Cuzin^b

The Role of Climate Refugia

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2012) 21, 393-404

Refugia: identifying and understanding safe havens for biodiversity under climate change

Gunnar Keppel^{1*}, Kimberly P. Van Niel², Grant W. Wardell-Johnson¹, Colin J. Yates³, Margaret Byrne³, Ladislav Mucina¹, Antonius G. T. Schut¹, Stephen D. Hopper⁴ and Steven E. Franklin⁵

"Refugia are habitats that components of biodiversity retreat to, persist in and can potentially expand from under changing environmental conditions...applicable to biodiversity under potential future climates arising from the enhanced greenhouse effect."

Climate change in 20th Century

Annual Temperature (Actual) Annual Precipitation (Relative)

Do patterns differ between variables?

Minimum Temp

Maximum Temp

Water balance variables are more striking

New Community or Life Zone

Modern

Moritz et al. 2008 Science Grinnell Resurvey Project

Populations and species responses to change

Range shift

- Elevationally (per our example)
- Latitudinally

Population shift

- Range is stable, but distribution of individuals has changed
- Change in age structure

• Genetic shift

- Selection and adaptation

What characteristics would allow refugia to maintain a population?

• Size

- Larger area, maybe more species or individuals
- Perhaps a SLOSS-type debate

Access

- Easy to "find"

Orientation and arrangement

Permit and facilitate movement between patches

Measures of connectivity can help assess Access and Orientation

What do we mean by "connectivity"?

- Abstract measurement, so values can be relative to the system or analysis
- Mapped routes of expected dispersal
 - Based upon some friction surface
 - Would assist in identifying corridors of retraction
 - Least-cost distance, for instance
- Estimated value of movement through an area
 - Identify well-traveled node in network
 - Provide an additional quantity of value

Metapopulations and connectivity

Metapopulations and connectivity

Metapopulations and connectivity

Refugia and connectivity

Refugia defined as patches that do not change (a lot)

Refugia and connectivity

Refugia and connectivity

Well-connected refugial sites are likely to be important for occupancy of populations and gene flow

PROJECT OBJECTIVES

- Map hypothetical connectivity of meadows in the Sierra Nevada
- Map hypothetical climate change refugia in the Sierra Nevada
- TEST mapped connectivity and refugia using occupancy and genetic data

Hypotheses of connectivity to test

- 1. Isolation by distance
- 2. Isolation by topography
- 3. Isolation by **watercourses**
- 4. Isolation by **roads**
- 5. Isolation by environmental heterogeneity

How are meadows connected and how is their environment changing?

- Spatial layer of meadows ICE at UC Davis
- Estimate the connectivity between them using Circuitscape based upon resistance and conductance surfaces
- Plotted forward in time to assess how meadows are expected to change

Meadows

Connectivity based on presence or absence of watercourses (Hyp #3)

Overall patterns of connectivity depends on surface

Distribution of values of connectivity

Four of the Circuitscape layers

Arrangement of meadows

	Distance	Distance	Distance		Rivers	Rivers	
	(10km)	(50km)	(100km)	Topography	(Distance)	(Presence)	Roads
Distance (10km)	1	0.788	0.638	0.326	0.154	0.169	0.322
Distance (50km)	0.788	1	0.935	0.236	0.102	0.116	0.297
Distance (100km)	0.638	0.935	1	0.218	0.113	0.129	0.280
Topography	0.326	0.236	0.218	1	0.584	0.637	0.770
Rivers (Distance)	0.154	0.102	0.113	0.584	1	0.960	0.591
Rivers (Presence)	0.169	0.116	0.129	0.637	0.960	1	0.645
Roads	0.322	0.297	0.280	0.770	0.591	0.645	1

Where are the Well-Connected Meadows?

Are Well-Connected Meadows at higher elevations?

Are larger meadows more connected?

Of the 5894 meadows, 470 were classified as WC (8.0%), and 2266 were classified as rWC (38.4%), and 3158 meadows (53.6%) were unclassified. However, the amount of area represented by the WC meadows was much larger (31.9%), while rWC meadows represent a similar proportion (35.6%), such that WC meadows tended to be those that are larger than other meadows.

Change within meadows is variable

WC meadows are red points

Differences in proportion of refugia within network of meadows

Variable	Measure (Threshold)	WC	rWC	Rest	Binomial test	Direction
CWD	Central Tendency (10%)	0.289	0.467	0.640	P < 0.001	Lower
SWE	Central Tendency (10%)	0.472	0.458	0.287	P < 0.001	Higher
Annual Temp.	Central Tendency (1°C)	0.791	0.817	0.934	P < 0.001	Lower
Annual Precip.	Central Tendency (10%)	0.538	0.453	0.302	P < 0.001	Higher
Max. Temp.	Central Tendency (1°C)	0.636	0.662	0.705	P = 0.019	Lower
Min. Temp.	Central Tendency (1°C)	0.330	0.237	0.316	P = 0.028	Higher
Mean. Temp. of	Central Tendency (1°C)	0.696	0.658	0.805	P = 0.020	Lower
Coldest Quarter						
Monthly	Extreme Warming	0.332	0.226	0.212	P < 0.001	Higher
Min. Temp.	(30 Months)	0.332	0.220	0.222	1 01001	
Monthly	Extreme Warming	0.570	0.482	0.507	P = 0.001	Higher
Min. Temp.	(60 Months)	0.070	01102	0.007	1 01001	
Monthly Precip.	Extreme Wet (30 Months)	0.021	0.008	0.003	P < 0.001	Higher
Monthly Precip.	Extreme Wet (60 Months)	0.968	0.961	0.904	P < 0.001	Higher
Monthly Precip.	Extreme Dry (30 Months)	0.174	0.221	0.290	P < 0.001	Lower
Annual Temp. &	Control Tondoncios	0.419	0.363	0.291	P < 0.001	Higher
Annual Precip.						
SWE &	Central Tendency &	0 09/	0.067	0.033	P < 0.001	Higher
Monthly Min. Temp	Extreme (30 Months)	0.034	0.007	0.033	r < 0.001	ingliei

Erosion of the network in the (near) future

5

e le

Change from 1910-1939 in 2010-2039

Change from 1910-1939 in 2070-2099

PCMA2 Annual Temp

Testing the Refugia and Connectivity Maps

Belding's Ground Squirrel (Urocitellus beldingi)

- Montane meadow specialist
 - Highly detectable
- Group-living
- Habitat specialist

Site Extirpations (N=31) Site Persistence (N=43)

Original Surveys: 1902-1966 Resurveys: 2003-2011 Detectability (p) > 0.995 for 2+ visits

Site Extirpations (N=31) Site Persistence (N=43)

42% Rate of Site Extirpations Across CA

Morelli et al. 2012 Proc. B

Site Extinction at Hotter Sites

Anthropogenic Refugia?

Image USDA Farm Service Agency

"00'57.23" N 119'09'02.77" W elev 6468 ft

Morelli et al. 2012 Proc. B

2011 Surveys for Belding's Ground Squirrel

- Independent data set
- 38 sites, distributed throughout YNP
- 20 occupied,
 - 18 unoccupied

Genetic Analysis

- 187 tissue samples
- Qiagen extraction
- 12 nuclear
 microsatellite loci

- Genepop
- FSTAT
- STRUCTURE
 - –Model-based clustering method
- BayesAss

Is allelic richness related to connectivity or climate?

Positive relationship between AR and Connectivity – More alleles in well-connected meadows

between AR and Refugia – Fewer alleles in warmer meadows

Mean Temperature of the Coldest Quarter (°C)

Is genetic distance related to isolation?

- Permutations to examine patterns of Fst
- Support for dispersal limitation by watercourses

Conclusions and Implications

- Climate may be changing more rapidly than species can move or adapt
- Inclusion of connectivity within climate change research with empirical data is important
- Climate refugia concept supported
- Opportunities for California managers to focus limited resources on critical areas?

Funding & Data Sources

Comments & Assistance

UC Davis Information Center for the Environment (ICE)

- Michelle Koc
- Michelle Hershey
 - Moritz Lab
- Beissinger Lab
- Ilaria Mastroserio, Jeni Chan, Matt Pfannenstiel, and other field assistants
- BIGCB working group
- Biotic Responses to Climate Change in California working group

Thanks!