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Abstract
Key to understanding the implications of climate and land use change on biodiversity and

natural resources is to incorporate the physiographic platform on which changes in ecologi-

cal systems unfold. Here, we advance a detailed classification and high-resolution map of

physiography, built by combining landforms and lithology (soil parent material) at multiple

spatial scales. We used only relatively static abiotic variables (i.e., excluded climatic and

biotic factors) to prevent confounding current ecological patterns and processes with endur-

ing landscape features, and to make the physiographic classification more interpretable for

climate adaptation planning. We generated novel spatial databases for 15 landform and

269 physiographic types across the conterminous United States of America. We examined

their potential use by natural resource managers by placing them within a contemporary cli-

mate change adaptation framework, and found our physiographic databases could play key

roles in four of seven general adaptation strategies. We also calculated correlations with

common empirical measures of biodiversity to examine the degree to which the physio-

graphic setting explains various aspects of current biodiversity patterns. Additionally, we

evaluated the relationship between landform diversity and measures of climate change to

explore how changes may unfold across a geophysical template. We found landform types

are particularly sensitive to spatial scale, and so we recommend using high-resolution data-

sets when possible, as well as generating metrics using multiple neighborhood sizes to both

minimize and characterize potential unknown biases. We illustrate how our work can inform

current strategies for climate change adaptation. The analytical framework and classifica-

tion of landforms and parent material are easily extendable to other geographies and may

be used to promote climate change adaptation in other settings.
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Introduction
The science underpinning climate adaptation planning is nascent and complex, but recent
guidance emphasizes the need to characterize environmental heterogeneity that underlies a
variety of strategies to conserve ecological patterns and processes in the face of climate change
(e.g., [1,2,3,4]). One of the increasingly used strategies is to characterize environmental hetero-
geneity by identifying “arenas of biological activity,” “land facets” or physiographic settings
(e.g., [5,6,7]). Of the general adaptation strategies identified by climate-smart conservation [3],
protecting different components of environmental heterogeneity forms the basis for at least
four of them. One key strategy is to protect key ecosystem features ([4,8,9,10,11]), because
areas with high environmental heterogeneity support high genetic and species diversity
([3,5,12,13,14,15,16), including rare plant species of conservation concern [7]. A second strat-
egy is to support evolutionary potential by representing a variety of environmental settings,
which facilitates adaptation of populations and reassembly of communities [17], and species’
responses to climate change [18,19]. A third strategy is to protect refugia—places that are less
likely to be influenced by climate change because site-level climate conditions are decoupled
from changes in regional climate [20]. A fourth strategy is to ensure connectivity among differ-
ent habitat types and physiographic settings, and many of the landscape features such as ripar-
ian zones that are important for connectivity are strongly aligned with certain landforms (e.g.,
valley bottoms).

Here we describe the development of a novel classification and maps of landforms and
physiography to be used as foundational data for ecological modeling of species and biodiver-
sity to inform climate adaptation planning activities. We recognize that physiographic settings
can be considered over a variety of spatial and temporal scales, and that some landforms
(especially locally) can change due to extreme events, such as flash floods or earthquakes. This
has led scientists to view geomorphology as non-linear and dynamic [21]. Yet, here we gener-
alize these dynamics to emphasize geophysical settings that occur over broad spatial extents
(>100 km2) and change, on average, at relatively slow time scales (centuries to millennia). In
comparison to the dramatic climatic and biotic responses that are forecast to occur due to cli-
mate change [22], we view these settings as relatively static. Our characterization of landforms
confers a practical advantage for climate adaptation because it isolates those features that will
likely remain on the landscape and allow managers to examine and focus on the relatively
high uncertainty in dynamic variables, such as climate model projections of temperature or
precipitation.

Seminal work by ecologists has long recognized that landforms [23] structure ecological
patterns and processes (e.g., [24–27]). More recently, scientists have brought this concept into
conservation planning by identifying land facets [6,28], abiotic units [29–32], geodiversity
[33,34], geomorphological units [35], and the geophysical stage [7,36]. These physical features
have the potential to inform climate adaptation strategies by helping characterize and inter-
pret how species’ distributions are locally influenced by climate and other broad scale
dynamic factors. Importantly, not all species are expected to interact with the physiographic
setting in the same way. Species’ ecological niches (i.e., the environmental conditions and
resources required by species for survival) are shaped in part by biophysical variables (e.g.,
temperature), which are in turn shaped by physical variables that define the physiographic set-
ting [37, 38]. Physical variables are broadly measurable at the topographic and even micro
scales at which many species interact with the environment. Hence, they are important for
understanding how species’ ecological niches translate geographically into fine-scale distribu-
tions within the physiographic setting. Such resolution issues pertaining to scale have an
immense effect on identifying climate change refugia and opportunities for maintaining
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connectivity [18]. In addition, the influence of physiographic setting on the fine-scale distri-
butions of plant species further determines habitat composition and structure for many ani-
mal species. Combined, the fine-scale patterning and partitioning of species distributions
within a physiographic setting affect overall richness and the likelihood of stochastic extirpa-
tion through the area-heterogeneity tradeoff [39].

Our work to characterize environmental heterogeneity was guided by three criteria. First,
we excluded factors that have been used to define physiographic units [7,28,29,40] that change
relatively rapidly, such as climate and biotic interactions. Instead, we used only physical factors
that remain relatively stable over centuries to millennia (solar insolation, hillslope position,
lithology), recognizing that these physical factors are ultimately shaped by tectonic processes,
climate, and biota over longer time scales [41]. The advantages of characterizing landforms
and physiographic diversity solely on relatively static, physical variables are that: (a) the eco-
logical interpretation is straightforward and parsimonious because solar insolation, hillslope
position, and lithology underlie dynamic processes; (b) it explicitly avoids confounding classifi-
cation thresholds with contemporary patterns defined on the basis of climatological and biotic
distributions, which may change dramatically and in unprecedented ways over a management
planning time horizon (10–100 years; [42]); and (c) it provides a basis to evaluate the propor-
tion of current biological and environmental diversity that is explained by stable factors that
will not change over a planning time horizon, thus offering a baseline for interpreting the mag-
nitudes and uncertainties of future change.

A second guiding criterion was that estimates of physiographic diversity are sensitive to spa-
tial resolution and extent [43], so we derived landforms using a multi-scale analysis [44]. The
multi-scale approach informs a wider range of ecological questions by identifying the scale(s)
at which particular physiographic settings are defined and experienced by individual species.
Fine-grained features can be locally and regionally important [45] and so the resolution of the
data should be as detailed as practically possible to assist managers in making decisions at a
local scale, typically identified to be at roughly 10–90 m. Landforms generated from high-reso-
lution datasets are especially important as a way to better “downscale” typical climate-based
outputs for ecological applications, which tend to be too coarse to be operational at the local
level.

A final guiding criterion was the need to make these data relevant to natural resource man-
agers by generating a parsimonious, easy to explain and interpretable model [46]. Moreover,
because conservation in the era of rapid climate and land use change forces us to plan at
broader extents [47], we wanted to provide comprehensive data that are consistent across
broadly defined regions, such as the U.S. Department of Interior Landscape Conservation
Cooperatives (LCCs; [48]).

Our goal in this paper is to describe an ecologically relevant classification and map of land-
forms and physiographic classes that are suitable for climate adaptation planning. We exam-
ined the sensitivity of our landform classes to changes in spatial resolution by comparing
datasets generated at 10, 30, 90, 270, and 810 m resolution. We illustrate the utility of our data-
sets by calculating the amount of explanatory power they have against other common indica-
tors of biodiversity patterns and spatial climatic gradients. We also summarized the patterns of
landforms and physiography across the conterminous USA, including by LCCs and conduct a
“gap analysis” [49] of level of land protection for landform types. Because there is large uncer-
tainty associated with future climate conditions and even more uncertainty around ecological
responses, which likely will include novel communities, we believe providing information
about what is likely not to change offers a strong foundation for managers to build robust cli-
mate adaptation plans.
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Materials and Methods
We generated three related maps: (1) landforms; (2) physiography (landforms combined with
lithology); and (3) physiographic diversity.

Landforms
We developed a comprehensive classification of landforms based on hillslope position and
dominant physical processes. Following work articulating hillslope and soil formation (aka
topographic sequences; [50,51]), we distinguished four hillslope positions that form a natural
sequence of topographic units along the catena: ridges/peaks (summits), upper slopes (shoul-
ders), lower slopes (foot slopes), and valley bottoms (toe slopes). Next, we differentiated the
position within each of these hillslopes as a function of solar orientation to reflect how ecologi-
cal processes (especially soil moisture and evapotranspiration) are strongly influenced by the
intensity of insolation and/or shading [24]. Finally, we identified features at the extremes of
hillslope gradients, including areas that are very flat (i.e. areas<2°) or very steep (i.e. “cliffs”
>50°).

To quantify hillslope position, we calculated a multi-scale topographic position index (TPI)
that measures relative topographic relief [52,53]:

TPI ¼ Eo � En

where E0 is the elevation in meters at a given location (or cell) from the National Elevation
Dataset (originally at 10 m resolution, for the contiguous USA; excluding Alaska, Hawaii, and
territories) [54], and En is the mean elevation of all cells within a neighborhood specified by
radius r. Highly positive values are associated with peaks and ridges, while highly negative
values are associated with valley bottoms and sinks. Locations with values approaching zero
typically occur on uniform hillslopes or on flat lands (e.g., plateaus). We standardized TPI fol-
lowing [55] to better resolve fine-scale features:

TPIs ¼ ðEo � EnÞ=Es

where Es is the standard deviation of elevation for all cells within a neighborhood specified by
radius r. Previously, TPI has been calculated for broad regions using only a single neighbor-
hood, such as a radius of 200 [6], 500 [56], or 564 m globally [57]. So that our analysis would
be less sensitive to a particular scale and following [52], we calculated TPIs at multiple scales,
selecting neighborhood sizes that would differentiate relatively small geomorphological fea-
tures such as local hills or ridges from large mountain peaks and divides, and large, broad val-
leys across the USA. That is, we calculated TPI using radii (r) of 270, 810, and 2430 m using a
standard progression [58] in multiples of 3 from the base 10 meter native resolution of the
DEM that scales roughly in order of magnitude of area and nest with other data used in this
analysis (e.g., derived from Landsat imagery at 30 m). Initially we explored additional larger
radii (7.2 and 21.8 km), but found they did not discriminate fine-grain (<1 km) features.

We calculatedmTPIs as:

mTPIs ¼ ðTPIs1 þ TPIs2 þ TPIs3Þ=3

The break between the upper slope and mid-slope is found wheremTPIs = 0. Hills were dif-
ferentiated as upper slopes that had between 30–300 m relief (measured as the elevation gain
from its base to highest point; [59]). Ridges/peaks were at least 300 m, and mountains or
divides (ridges or peaks that have regional significance) also had at least 300 m relief, but for
TPIs where r = 2430 m.
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Valley bottoms were distinguished from lower slopes wheremTPIs< -0.75, adjusted from
-1.0 to reflect the asymmetrical distribution of elevation values (due to gravity). Narrow and
relatively deep valleys (canyons) were found wheremTPIs< -1.2 and the absolute relief
exceeded 5 meters [60]. We also used slope to distinguish two special classes: cliffs were identi-
fied as those locations with greater than 50° slope, and flats were identified as areas that have
slopes less than 2° when calculated ~810 m resolution to filters out small “speckles” and stripes
that can occur from artifacts in digital elevation models. We confirmed these thresholds by
visually comparing cliff and flat landforms to 30 m datasets on hillshade and delineated geo-
morphological types from a high resolution soils database (http://tinyurl.com/ssurgo), at 3 ran-
dom locations in nearly 60 ecoregions across the USA.

We used an estimate of incident radiation and heat load [61] that combines slope, aspect,
and latitude to predict the ecological effects of potential direct radiation. In contrast to other
methods that have relied on aspect [7,36] or slope and solar insolation [52,62], heat load has a
strong empirical relationship to evapotranspiration that controls vegetation distributions
[56,61] and can be readily calculated at broad extents and high resolution (30–90 m).

We modified the original heat-load index [61] in two ways to construct a continuous heat-
insolation load index (CHILI). First, we modified the formula to explicitly incorporate latitude
as a variable so that heat load is calculated on a continuous (latitudinal) basis, assuming insola-
tion at the equinox [52]. Second, the original heat-load index is based on a 45° “folding” to
mimic patterns of evapotranspiration and measured heat load that increase in the afternoon.
We modified the folding to 22.5°, based on more recent empirical studies that found that ther-
mal south ranged from ~10° to 30° west of south over the growing season [63], and mean maxi-
mum daily temperatures were reached at ~20°-45° west of south [64]. We did not include
assumptions that might influence the amount of radiation due to atmospheric conditions (e.g.,
due to clouds) or other specific assumptions about growing seasons.

We classified the heat load index to distinguish “warm”, “neutral”, and “cool” portions of a
landscape. We established these classes from the CHILI values (warm> 0.767, cool<0.448,
neutral 0.448–0.767) by finding the thresholds that resulted in equal areas of each class on a
simulated landscape. We did this using an idealized mountain formed by a Gaussian surface,
where we controlled the height (i.e., population) to width (i.e., bandwidth) of a kernel density
function to minimize areas with either>50° (“cliff”) or<2° (flat). The warm/neutral/cool pat-
terns generated from the thresholds aligned well with independent estimates for a range of
physiographic provinces across the USA.

Our final comprehensive classification of landforms consists of 15 classes (Table 1). We
implemented the landform algorithm (S1 Fig) using the Google Earth Engine platform [65], at
five resolutions (or grains: 10, 30, 90, 270, and 810 m) using a 10 m USGS DEM [54].

Lithology
We used the best-available national-level dataset on lithology [66], which specifies 18 ecolog-
ically relevant parent material classes defined by textural and chemical similarities and mapped
as polygons consistently across the USA (1:1,000,000). Rather than soil class information, we
used geologic parent material because of the strong linkage between these characteristics and
ecological response [7]. That is, in addition to differentiating crude soil texture categories,
lithology incorporates differences in chemical properties found to be important to vegetation.
We converted the polygons to a 270 m resolution raster to differentiate linear, narrow (~540 m
in width) polygons. We then overlayed the lithology classes with the land form classes, generat-
ing the physiography dataset at 270 m resolution. We explored the higher spatial resolution
SSURGO (http://tinyurl.com/ssurgo) and STATSGO (http://www.tinyurl.com/statsgo) soils
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databases, but these had numerous inconsistencies in classifications, were incomplete in
roughly 20% of the USA (with higher proportions of missing classes in terrain with higher
relief), and had attributes on parent material available for only roughly 10% of the USA.

Multi-scale diversity
We estimated environmental heterogeneity by calculating the diversity of physiographic units
using Shannon’s equitability (EH; 0 to 1), which is calculated by normalizing the Shannon-
Weaver diversity index (H):

EH ¼ H
Hmax

¼ H=lnðSÞ

H ¼ �
Xs

i¼1
ðpiln piÞ

where pi is the proportion of observations (cells) of type i in a given neighborhood and S is
the number of physiographic types. We used a multi-scale approach to calculate the diversity
of types using moving-window neighborhoods based on the average area of hydrologic unit
codes 4, 6, 8, 10 12, 14, and 16 (i.e. 115.8, 89.9, 35.5, 13.1, 5.6, 2.8, and 1.2 km radius). We
used the area of hydrologic units as the basis for the multi-scale moving window analysis
because they are hierarchically organized and represent ecologically relevant scales [67]. Note
that the resolution (or grain) of the diversity dataset is 270 m based on the physiography data
layer described above. We conducted these spatial analyses using ArcGIS v10 (Esri 2014,
Redlands, CA).

Relationship with existing indicators
To examine some of the linkages between the physiographic setting and climate adaptation
strategies, in accordance with our starting criteria, we asked a series of questions that could be

Table 1. A hierarchical classification of ecologically relevant landforms.

Hillslope position ID Class name TPI Slope (°) CHILI

Summit 11 Peak/ridge warm (0.0 < mTPIs < 1.0) and (30 < (Eo-En) < 300) Warm

Summit 12 Peak/ridge (0.0 < mTPIs < 1.0) and (30 < (Eo-En) < 300) Neutral

Summit 13 Peak/ridge cool (0.0 < mTPIs < 1.0) and (30 < (Eo-En) < 300) Cool

Summit 14 Mountain/divide* (0.0 < mTPIs < 1.0) and ((Eo-En) � 300)

Summit 15 Cliff >50

Upper slope 21 Upper slope warm (0.0 < mTPIs < 1.0) and ((Eo-En) � 30) Warm

Upper slope 22 Upper slope neutral (0.0 < mTPIs < 1.0) and ((Eo-En) � 30) Neutral

Upper slope 23 Upper slope cool (0.0 < mTPIs < 1.0) and ((Eo-En) � 30) Cool

Upper slope 24 Upper slope flat (0.0 < mTPIs < 1.0) and ((Eo-En) � 30) <2

Lower slope 31 Lower slope warm (-0.75 < mTPIs < 0.0) and ((Eo-En) > -5) Warm

Lower slope 32 Lower slope neutral (-0.75 < mTPIs < 0.0) and ((Eo-En) > -5) Neutral

Lower slope 33 Lower slope cool (-0.75 < mTPIs < 0.0) and ((Eo-En) > -5) Cool

Lower slope 34 Lower slope flat (-0.75 < mTPIs < 0.0) and ((Eo-En) > -5) <2

Valley bottom 41 Valley (mTPIs < -0.75)

Valley bottom 42 Valley (narrow) (mTPIs < -1.2) and ((Eo-En) � -5)

Classes were based on dominant hillslope position and defined using the topographic position index (TPI), slope, and continuous heat load index (CHILI).

*Difference in elevation calculated at r = 2430, others are calculated at r = 810. ID is the unique identifier used to label each class in the landform dataset.

doi:10.1371/journal.pone.0143619.t001
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answered using a combination of our landform and physiographic diversity datasets, as well as
others commonly used to understand patterns of biodiversity and climatic variation. Our first
question related strongly to the strategy to protect key ecosystem features: What proportion of
variation in biodiversity is explained by variation in physiographic setting? To assess the rela-
tionship with patterns of biodiversity, we examined physiographic diversity in relation to verte-
brate species richness [68] and ecological system richness [69]. Range maps for USA mammals
(91 species) and amphibians (n = 48) and bird breeding ranges (n = 200) were compiled at 10
km resolution. We calculated richness as the multi-scale average of the number of species using
the same watershed-based scales described earlier. The multi-scale average of the number of
ecological systems (579 vegetation types) was calculated from 30 m resolution data [67].

Because the environmental heterogeneity that influences key ecosystem features is influ-
enced by a combination of climatic and physiographic factors, we posed a second related
question: What proportion of variation in current meso-scale climate (840 m resolution) was
explained by variation in physiographic setting? We answered this question in two ways. First,
to assess the relationship between our physiographic datasets and meso-climatic variation, we
compared landform diversity against historical temperature variability. Landform diversity
was calculated as the average of the landform EH (at 840 m resolution) across moving win-
dows for the multi-scale watersheds. Temperature variability was calculated as the multi-scale
average of the standard deviation in historical (1950–2000) annual mean temperature from
WorldClim [70], also at 840 m resolution. Second, we compared spatial variation between
mTPI and historical estimates of meso-climate fromWorldClim, where slope (rise/run) was
calculated using the average maximum technique [22]. We calculated slopes on the rawmTPI
values (before classifying into slope position categories; m/km) and the denominator of cli-
mate velocity (°C/km).

In answering the above questions, we used Pearson’s product-moment correlation coeffi-
cients [71] to assess how much variation in the indicator response variables was explained by
the landform and physiographic predictor variables. Our interest was to simply quantify the
proportion of current environmental heterogeneity that is explained by stable factors that
change relatively little over a planning time horizon.

Results
We first analyzed how our landform classes were sensitive to resolution, and found that general
trends in class proportions were consistent throughout the USA over a range of scales (resolu-
tion), but strong differences for classes that occupied small portions of the USA (Table 2) were
evident as well. We found a more than 2-fold difference for: hill/ridge (cool) and cliff (30:90 m
ratio); upper slope (cool) and lower slope (cool) (30:270 m ratio); and upper slope (warm),
upper slope, and lower slope (warm). Interestingly, we found that “cool” landforms that are
likely to be least affected by warming climates [19] were particularly sensitive to resolution and
are under-represented at coarser-resolutions. The valley bottom (narrow) class showed direc-
tional changes, first slightly decreasing in representation as a function of coarser resolution,
but at 810 m exhibited a 25% increase in representation (compared to 30 m).

Because we found that landforms were clearly sensitive to spatial resolution, we provide our
results below based on the 30 m resolution dataset. Some general patterns are evident by exam-
ining the variation in the proportion of each class within each LCC across the USA (Fig 1A;
Table 3), but landforms also exhibit complex local patterns that affect climate heterogeneity
(Fig 1B). By hillslope position, we found that 1.16% of the conterminous USA is considered to
be peaks/divides and hills/ridges, 45.61% on upper slopes, 43.79% on lower slopes, and 9.44%
in valley bottoms. “Neutral” heat load dominates most hillslope position classes. As a
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proportion of the USA, hills/ridges had 0.69% in neutral heat settings, while 0.31% was warm
and only 0.05% is cool. Upper slopes were dominated as well by “neutral” heat load situations
(with 14% neutral and 18% flat, with 12% “warm” and 0.7% “cool”). Lower slopes also were
dominated by neutral heat loads with 11% neutral and 20% flat, with 12% warm and 0.4% cool.
Finally, deep and narrow valleys cover 1.14%, while broad valley bottoms cover 8.29% of the
USA.

We overlaid the 15 landform types with 18 classes of soil parent material, resulting in 269
unique combinations of physiographic types (270 possible; Fig 2; Table 4). The multi-scale
physiographic EH averaged 0.382 (SD = 0.068), with high mean values located in the North
Pacific (0.671), Great Northern (0.574), and Southern Rockies (0.526), and low mean values
located in Peninsular Florida (0.120), South Atlantic (0.314), and the Gulf Coast Prairie
(0.321), and the Great Plains (0.347). Strong patterns were evident and coincide with major
mountain ranges of the Cascades, Bitterroot/Absaroka, Sierra Nevada, Southern Rockies, and
the Appalachians. High diversity also occured in areas with major river systems, throughout
the Midwest in particular.

We also examined landform classes in relation to protected areas (aka a “gap analysis” [48];
Fig 3). Not surprisingly, we found that the highest levels of protection tended to occur on
peaks/divides and hills/ridges, while the lowest level of protection occurred at lower slope and
valley bottoms locations. Only 5 of 15 landform types were represented at the Aichi Biodiver-
sity Target level (17%): peak/divide, cliff, hill/ridge (cool), upper slope (cool), and lower slope
(cool).

We found varying levels of explanatory power among our variables and other indicators of
biodiversity commonly used in climate adaptation planning. Overall, the Pearson’s product-
moment correlation between physiographic diversity and vertebrate species richness was
0.449, while the correlation with ecological systems was 0.285. The strongest correlation we
found was between slopes of topographic position and the denominator of climate velocity

Table 2. Landform classes in the conterminous USA at different resolutions.

Percent in each class at resolution (m) Ratio

Name 30 90 270 810 30:90 30:270 30:810

Hill/ridge (warm) 0.31% 0.31% 0.38% 0.48% 1.00 -1.24 -1.57

Hill/ridge 0.69% 0.73% 0.66% 0.64% 0.94 1.03 1.07

Hill/ridge (cool) 0.05% 0.01% 0.00% 0.00% 4.03 51.51 6318.84

Peak/divide 0.05% 0.05% 0.05% 0.07% -1.01 -1.02 -1.51

Cliff 0.07% 0.02% 0.01% 0.00% 3.18 11.68 n/a

Upper slope (warm) 12.40% 11.39% 9.34% 5.04% 1.09 1.33 2.46

Upper slope 14.32% 13.05% 11.30% 7.05% 1.10 1.27 2.03

Upper slope (cool) 0.69% 0.39% 0.13% 0.01% 1.77 5.48 96.50

Upper slope (flat) 18.19% 19.61% 23.41% 33.50% -1.08 -1.29 -1.84

Lower slope (warm) 12.23% 11.04% 9.30% 5.80% 1.11 1.31 2.11

Lower slope 10.99% 10.29% 9.96% 6.84% 1.07 1.10 1.61

Lower slope (cool) 0.41% 0.23% 0.09% 0.00% 1.80 4.70 83.54

Lower slope (flat) 20.16% 23.45% 25.80% 28.75% -1.16 -1.28 -1.43

Valley bottom 8.29% 8.30% 8.48% 10.41% 1.00 -1.02 -1.25

Valley bott. (narrow) 1.14% 1.13% 1.09% 1.43% 1.01 1.05 -1.25

This table shows the proportion of the conterminous USA by landform class, as a function of resolution.

doi:10.1371/journal.pone.0143619.t002
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Fig 1. Landforms of the conterminous USA. (A) A landformmap of the USA, with Landscape Conservation Cooperatives used by the Department of
Interior to guide climate change adaptation. Labels a-h refer to inset examples and legend for class types. (B) Examples of landform classes, zoomed in to
illustrate different patterns: (a) the Pacific Northwest around Mount St. Helens (1:175,000); (b) along the Missouri River at the boundary of Montana and North
Dakota (1:200,000); (c) near Milton, Pennsylvania (1:500,000); (d) in the Sky Islands of southern Arizona (1:500,000); (e) Estes Park, Colorado (1:175,000);
(f) near Smithfield, North Carolina (1:400,000); (g) along the Ogeechee River near Statesboro, Georgia (1:300,000); and (h) south Texas tablelands
(1:200,000).

doi:10.1371/journal.pone.0143619.g001
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(0.792). The correlation between landform diversity (excluding parent material) and tempera-
ture variability (SD) was 0.483.

Discussion
The conterminous USA exhibits a wide range of landforms and parent material, resulting in
considerable physiographic diversity. Our maps of landform classes and physiographic diver-
sity are novel contributions that characterize ecologically relevant aspects of abiotic environ-
mental heterogeneity. These databases provide a consistent and comprehensive platform for
climate adaptation planning at local to regional and national scales.

Climate adaptation planning will likely involve pursuing multiple strategies, and below we
briefly explore how landforms and physiographic diversity could inform such efforts—espe-
cially protecting key ecosystem features, ensuring connectivity, supporting evolutionary potential,
and protecting refugia. Note that our intent is to provide a few illustrative examples of how our
datasets can be applied within an adaptation framework, not to argue that these are the only

Table 3. Ecoregional distribution of landforms.

Area Summit Upper slope Lower slope Valley bottom

LCC (km2) Peak/
ridge
warm

Peak/
ridge

neutral

Peak/
ridge
cool

Mtn/
divide

Cliff Warm Neutral Cool Flat Warm Neutral Cool Flat Valley Narrow

North Pacific 179,408 0.369 2.885 0.100 0.278 0.027 10.02 27.98 2.79 2.80 11.20 24.61 1.61 5.77 8.33 1.23

California 210,173 1.046 1.384 0.007 0.125 0.039 18.21 13.32 0.34 9.21 21.17 10.00 0.22 16.81 7.38 0.74

Great
Northern

660,379 0.124 1.791 0.098 0.245 0.087 6.48 30.04 2.92 4.89 7.43 27.12 1.85 8.83 7.18 0.92

Great Basin 562,700 0.319 1.133 0.009 0.070 0.010 8.49 17.12 0.35 9.90 13.34 17.68 0.15 26.63 4.43 0.36

Gulf Coast
Prairie

382,730 0.141 0.015 0.000 0.000 0.000 12.10 0.11 0.00 34.28 9.28 0.04 0.00 34.07 9.20 0.76

Southern
Rockies

516,755 0.645 1.136 0.016 0.103 0.148 21.34 14.85 0.47 7.29 22.17 11.75 0.23 12.51 6.48 0.86

Plains and
Prairie
Potholes

783,896 0.008 0.265 0.002 0.001 0.000 0.44 20.34 0.02 25.21 0.57 15.93 0.01 27.38 9.00 0.82

Great Plains 782,004 0.041 0.054 0.000 0.000 0.000 7.44 6.12 0.00 34.42 6.44 3.87 0.00 32.90 7.77 0.93

Upper
Midwest &
Great Lakes

540,064 0.011 0.226 0.000 0.001 0.000 0.88 15.70 0.00 28.55 0.90 10.22 0.00 32.85 9.44 1.20

Eastern T.
Prairie & Big
Rivers

535,630 0.010 0.026 0.000 0.000 0.000 6.30 11.15 0.00 31.46 5.41 6.06 0.00 28.30 9.84 1.45

Gulf Coast
Prairie

382,730 0.141 0.015 0.000 0.000 0.000 12.10 0.11 0.00 34.28 9.28 0.04 0.00 34.07 9.20 0.76

Gulf Coastal
Plains and
Ozarks

728,639 0.234 0.150 0.000 0.000 0.000 20.66 2.12 0.00 22.17 14.30 1.07 0.00 26.98 10.71 1.61

Appalachian 592,906 1.007 2.061 0.001 0.007 0.000 22.80 17.66 0.06 4.36 20.20 11.45 0.02 6.81 11.08 2.50

North
Atlantic

289,740 0.146 1.127 0.006 0.009 0.000 8.01 23.51 0.10 13.02 6.96 20.53 0.02 16.52 8.80 1.24

South
Atlantic

357,847 0.060 0.041 0.000 0.000 0.000 18.96 0.45 0.00 29.80 13.38 0.20 0.00 24.91 10.08 2.12

Peninsular
Florida

93,383 0.002 0.000 0.000 0.001 0.000 0.73 0.00 0.00 43.81 0.36 0.00 0.00 44.48 9.59 1.04

This table shows the percentage of each landform class in the conterminous USA by Landscape Conservation Cooperative ecoregions (LCC).

doi:10.1371/journal.pone.0143619.t003
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datasets or uses. Indeed, we expect future research will further explore the use of physiographic
variables for climate adaptation planning, especially to evaluate indicators and available data-
sets, and to compare and evaluate data gaps.

We found that our measures of physiographic diversity had moderate levels of explanatory
power related to current patterns of biodiversity (0.449 for species richness), suggesting that
our physiographic datasets meaningfully capture key ecosystem features that structure biodiver-
sity and can aid coarse-filter approaches [5] to conservation planning. Our datasets may also
be extended to support “fine-filter” conservation planning and vulnerability assessments
focused on a particular ecosystem feature as a conservation target (e.g., an individual species or
important habitat). Fine-filter approaches might instead select particular spatial extents rele-
vant to the conservation target or particular landform or physiographic classes with which a
given species has high affinity. These may be used to better understand the fine scale distribu-
tion of particular species, as well as the topographic and micro environmental influences of cli-
mate and other important environmental variables influencing a species niche. Similarly, our
physiographic dataset can be leveraged to help ensure connectivity for fine-filter conservation
targets by identifying potential movement pathways among physiographic classes or to identify
locations of key landform types that facilitate ecological flows, such as slopes and valley bot-
toms [72]. Likewise, it can be used to identify locations for protecting refugia, which might be
located on cool slopes or valley bottoms where cold-air pooling has potential to occur [19].

Fig 2. Physiographic diversity in the conterminous USA.Multi-scale physiographic diversity, calculated using the Shannon-Weaver index. Labels are
mean diversity by Landscape Conservation Cooperatives, with standard deviations in parentheses.

doi:10.1371/journal.pone.0143619.g002
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We found that the spatial rate of change inmTPI (m/km) was highly correlated with the
spatial rate of change in temperature (°C/km) (0.792), suggesting that our physiographic diver-
sity dataset is predictive of areas with strong temperature gradients. Importantly, we expect the
relationship to be scale dependent [73], but also note that ourmTPI was calculated over a
range of biologically relevant scales (270 to 2430 m) that encompassed meso-climate (840 m).
The presence and location of strong climatic and edaphic gradients identified by our physio-
graphic diversity dataset would provide information useful for strategies aiming to support evo-
lutionary potential, given the importance of these gradients to evolutionary processes such as
diversification, speciation, and extinction [74–76].

An important application of landforms is to “place” coarser-scale climate change informa-
tion to allow resource managers to understand how a particular species or ecological process
might respond to climate change at a finer scale. There is a strong theoretical basis for under-
standing the relationship of landform types to climate [19]. Although geologic parent material
has a less clear role, it can indirectly influence climate through soil characteristics (e.g., produc-
tivity and water-holding capacity) and—over shorter time scales—vegetation [77].

Not surprisingly, we found a strong scaling effect on the amount and especially pattern of
landform classes as a function of resolution (Table 1. The interaction between physiography
and climate is highly scale dependent [18]–and it is important to note that most climate infor-
mation is still relatively coarse (~1 km is considered highly “downscaled” climate data). Our
findings that landforms that are most likely to be related to climate refugia (“cool” and valley
bottom) are especially sensitive to scaling suggests that work on identifying these areas should
consider representation and patterning effects of scale. Recent work on micro-scale climatol-
ogy has found that environmental heterogeneity varies in ecologically significant ways at hori-
zontal scales as small as 1 m2, and vertical scales even smaller at 1 cm2 [78,79]. Currently these
resolutions are too small to be mapped in a national-level database, but may be feasible for
localized studies. More generally, opportunities exist to develop stronger linkages between

Fig 3. Level of land protection by landform class.Results from a “gap” analysis of landforms showing the
level of land protection for each land form class. Level of protection follows the gap status classes [48]: Status
1—permanent protection from conversion and natural disturbances; Status 2—permanent protection from
conversion but may have somemodification of natural disturbances; Status 3—protection from conversion
for most areas but extractive uses may be allowed; and Status 4—no known formal legal mandates or
restrictions to prevent conversion of natural habitat types.

doi:10.1371/journal.pone.0143619.g003
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geomorphology and vegetation by building in explicit ecological mechanisms and processes,
including soils and other climate measures that may reflect physiological tolerances (e.g., max-
imum daily temperature), but also insolation (slope and aspect) and resulting water-balance
[78]. Because the lithology dataset is a relatively coarse scale (~1:1,000,000; converted to 270
m resolution), we recommend limiting interpretation of physiographic patterns to features at
least 1 km2 in size..

Many agencies and organizations are engaging in large landscape conservation and general
guidance has begun to emerge on how to conduct and coordinate climate adaptation planning
[2,11,30,80–82]. Although analyses of climate impacts on conservation targets are a key com-
ponent of most climate adaption planning frameworks, there is little guidance on how to
address broad, landscape-level impacts [18,80]. Rather, in contrast to species or habitat-level
conservation, the physiographic approach provides insight into the enduring features that will
continue to structure biodiversity in the face of climate change. We recognize that different
regional conservation groups, such as the LCCs, will likely need to adopt different strategies for
adapting to climate change, to allow for regional differences in climate change impacts, but
they may consider our landform and physiographic diversity datasets as a foundation for pur-
suing climate adaptation strategies on where and how to invest in climate adaptation.

Supporting Information
S1 Fig. Data flow diagram of landforms. Landforms were defined using basic topographic
measures derived directly from the USGS 10 meter Digital Elevation Model, as well as latitude.
Physiographic classes were generated by overlaying the landforms and lithology (parent mate-
rial) converted from polygons (1:1,000,000 scale) to 270 m raster grid. The program used to
generate these datasets is available from the authors upon request.
(PNG)
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