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Climate and climate change data: 

Present climate surfaces in this study were derived from PRISM 30 arc-second 
historical norms (1971-2000) (Fig. S1). Monthly mean temperatures were calculated as 
the mean of minimum and maximum temperatures, and then averaged to provide mean 
annual temperature. Temperatures seasonality was calculated as the standard deviation of 
monthly mean values for each pixel. Monthly precipitation was summed to obtain total 
annual precipitation, and seasonality was calculated as the coefficient of variation of 
monthly rainfall (CV was chosen to adjust for shifts in the mean from dry to wet regions). 

For area histograms, the average pixel size was set at 0.67 km2, the average size of 30 
arc second pixels calculated at the southern (33°N) and northern (44°N) edges of our 
domain, based on the formula: 

 
 

 
where A is pixel size (km2), C is pixel size in fractions of a degree, and lat is latitude. The 
first term is the latitudinal dimension of the pixel (111.325 km/degree) and the second 
term is the longitudinal dimension, which shrinks from a maximum at the equator to zero 
at the poles. Note that the 800 m PRISM surface is often referred to as 1 km resolution, 
for convenience, but actual pixel size is considerably less than 1 km2, especially as one 
moves towards the poles. 
 
Uncertainty and comparability of climate surfaces 

Given the increasing importance of climate surfaces in hydrological and ecological 
analyses, relatively little emphasis has been placed on their evaluation.  All current 
climate surfaces are generated by algorithms which produce gridded data from a smaller 
set of observations, usually weather station records (Daly, 2006; Daly et al., 2008).  
These point observations are sparse, especially in sparsely populated areas, and biased 
toward low elevations. In regions of low weather station density and/or high topographic 
complexity, the uncertainty introduced by such extensive interpolation may be 
significant.  

A variety of current climate surfaces are available, offering a range of observed and 
derived climate variables with varying methods of interpolation, levels of spatial 
resolution, geographic coverage, and uncertainty. The most widely used are PRISM and 
Daymet (Thornton et al., 1997) for the continental United States and Canada, and 
WorldClim (Hijmans et al., 2005) and the East Anglia CRU climate data 
(http://www.cru.uea.ac.uk/) for global analysis. Few comparisons exist of the values for 
environmental parameters produced by alternative climate surfaces (Daly, 2006; Daly et 
al., 2008; Loarie et al., 2009).  No studies have yet systematically examined the 
implications of using alternative current climate surfaces as modeling inputs. 



Many ecological studies generate future climate surfaces for impact analyses using 
simple downscaling methods that calculate change factors between current and future 
modeled climate parameters and interpolate these to a current climate surface at the 
desired spatial resolution. There is additional, though difficult to quantify, uncertainty 
introduced at this step (Klausmeyer and Shaw, 2009; Lawler, 2009).  High resolution 
future climate surfaces generated directly from climate model outputs are available only 
for limited geographies (Maurer et al., 2007), such as those employed in analyses 
presented here for the conterminous U.S. These current and future climate surfaces are 
essential tools for forecasting climate impacts across geographies and in a wide variety of 
sectors (e.g., Diffenbaugh et al., 2008; Loarie et al., 2008; Lawler, 2009; Loarie et al., 
2009; Parisien and Moritz, 2009).  Yet, the level of uncertainty in downscaled climate 
surfaces is unknown.  In part because of heterogenity of modelling approaches, no 
systematic effort has explored these uncertainties, or how they are propagated through to 
outcomes of modeling efforts.  

The geography of climate change will be much better understood when a standardized 
set of global high resolution current and future climate surfaces are available for a wide 
range of climate modeling studies. In the interim, a detailed comparative analysis of the 
wide range of existing current climate surfaces would provide a better understanding of 
the differences among these climate datasets and how that might affect the many 
modeling efforts which they underlie. The work presented in this paper is no less subject 
to these issues, as we utilize the PRISM gridded, spatial data set; we recognize that 
analyses such as ours will require continued analysis using alternative data sources to 
determine the robustness of conclusions. 

 
Future climate projections 

We acquired bias-corrected and spatially downscaled future climate projections from 
the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison 
Project phase 3 (CMIP3) multi-model dataset through the LLNL-Reclamation-SCU 
downscaled climate projections derived from the WCRP's CMIP3 multimodel dataset, 
stored and served at the LLNL Green Data Oasis (Wood et al., 2002; Wood et al., 2004; 
Maurer, 2007). From these, we calculated mean annual temperature and total annual 
precipitation from the A1B emission scenario averaged over the time period from 2070-
2099. These data are downscaled to 1/8th degree spatial resolution. Average change in 
temperature and temperature seasonality over 16 general circulation models in the 
CMIP3 dataset are shown in Fig. S2. Projected change in precipitation, which varies 
considerably over our domain, is shown for each of the models in Fig. S3. We selected 
the CCCMA_CGCM3_1.1 and GFDL_CM2_1.1 models, representing warmer-wetter 
and warmer-drier scenarios, respectively (Fig. S3, highlighted; maps for mean annual 
temperature and total annual precipitation shown in Fig. S4).   
 
Historical variability 

Historical climate surfaces for 1971-2000 obtained from PRISM were analyzed to 
determine the standard deviation of interannual variation for mean annual temperature 
and total precipitation, in each pixel (Fig. S5). Variability in temperature was lowest 
along the California coast, and higher in the interior, Several small hotspots scattered 
across the map suggest possible interpolation errors across years, or changes in data 



availability. Variability in precipitation was lowest in the Great Basin, and highest in the 
small corner of the Mojave desert in our domain. Average values of variability were 
calculated across the entire domain, and used to establish the width of histogram bins for 
calculation of changes in the realized climate (see text, Fig. S6). Maps of temperature and 
precipitation with color schemes following these histogram bin widths are shown in Fig. 
S7. 

 
Velocity magnitude and direction calculations 

To estimate climate change velocity (km yr-1), we calculated the ratio of spatial (ºC 
km-1 and mm km-1, for temperature and precipitation respectively) and temporal gradients 
(ºC yr-1; mm yr-1) (Loarie et al., 2009). We calculated the magnitude of spatial gradients 
on the present climate surfaces with a 3-by-3 grid cell neighbourhood using the average 
maximum technique (Burrough and McDonnell, 1998, p. 190) modified to accommodate 
different cell-widths at different latitudes. To convert cell-height in latitudinal degrees to 
km, we used 111.325 km degree-1. To convert cell-width in longitudinal degrees to km 
we calculated  where y is the latitude of the pixel in degrees. We 
used an analogous aspect algorithm to estimate the axis of the spatial gradients for each 
3-by-3 grid cell (Burrough and McDonnell, 1998). 

We approximated temporal gradients by resampling the 1/8th degree future climate 
surfaces to the PRISM 30 arc-second grid and subtracting the present climate surfaces 
from the future surfaces divided by 100. We used these temporal gradients to calculate 
velocity magnitudes by taking the ratio of the spatial and temporal gradients (Fig. S8a-c). 
To estimate the direction of climate change, we defined a unit vector along the directional 
axis of the spatial gradient pointed opposite sign of the temporal gradient. For example, if 
temperature increases, we picked the direction pointing towards cooler climates (Fig. 
S8d-f). 

For rising temperatures, compensatory movement should occur towards decreasing 
values on the current landscape (e.g., upslope). Given the topographic complexity of 
California, the predicted directions of movement in response to temperature are complex 
and highly interdigitated (Fig. S8d). The general northeasterly trend along the west slope 
of the Sierra Nevada is evident. For precipitation, the direction of movement depends 
critically on whether climate change will lead to drier or wetter conditions, as the 
direction at any point on the landscape will reverse 180° if the direction of climate trends 
reverses. This reversal is evident in the mirror image of colors for precipitation for the 
warmer-drier vs. warmer-wetter scenarios (Fig. S8 e vs. f). Under the warmer-wetter 
scenario, compensatory movements in response to temperature and precipitation change 
are generally conflicting, as seen by contrasting color patterns (Fig. S8d vs f). 
across a regional reserve network. 

 
Climate variability of reserves 

Protected areas of the Bay Area Protected Area Database (BPAD) were combined 
using the ARCMAP dissolve function, with a 100 m threshold, to identify contiguous 
reserves. All areas larger than 125 ha (2 PRISM pixels) were maintained for analysis, 
resulting in a set of 538 reserves. Reserve polygons were rasterized and aligned with 
PRISM climate surfaces for analysis. 



Climate diversity was calculated using Rao's quadratic entropy. Rao's entropy is 
usually calculated using the distribution of relative abundances (pi) in N discrete classes 
with dissimilarities among classes in distance matrix dij: 

 

Alternatively, for the climate surfaces considered here, each of the N pixels can be treated 
as its own class, so pi = 1/N, and the formula reduces to: 
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Figure Legends 
Fig. S1. (A) Mean annual temperature and (B) annual temperature seasonality (standard 
deviation of monthly means), both derived from monthly means averaged over historical 
period (1971-2000). (C) Total annual precipitation (log10) and (D) annual precipitation 
seasonality (coefficient of variation of monthly means), both derived from monthly 
means averaged over historical period (1971-2000). Data are from the PRISM 
interpolated climate database. 
 
Fig. S2. Change in (A) mean annual temperature and (B) temperature seasonality, 
averaged over 16 GCMs, A1b scenario, for 2070-2099. See Fig. S1a, b for baseline 
values. 
 
Fig. S3. Projected change in total annual precipitation for 16 GCMs, SRES A1b. Mean 
values averaged over the domain range from-140 to 272 mm. Ranking them in order we 
chose the 4th and 14th models to represent drier and wetter scenarios. Drier: 
gfdl_cm2_1.1, -119 mm; Wetter: cccma_cgcm3_1.1, +81 mm. We also used the 
corresponding temperature projections for these models 
 
Fig. S4. Change in mean annual temperature for (A) GFDL and (B) CCCMA, A1b 
scenario, for 2070-2099. Change in total annual precipitation for (C) GFDL (warmer-
drier) and (D) CCCMA (warmer-wetter), A1b scenario, for 2070-2099. Temperature 
scale bars are same for Fig. S2A, and Fig. S4A, B. 
 
Fig. S5. Historical variability, measured as standard deviation of annual means from 
1971-2000 for (A) mean annual temperature and (B) annual precipitation (log10 
transformed). Mean (range) are 0.58 (0.38 – 1.03) for temperature and 0.15 (0.088 – 
0.326) for precipitation.  
 
Fig. S6. Two-dimensional histograms of climate space. A) current; B) warmer-drier 
scenario (GFDL_CM2, 2070-2099); C) warmer-wetter scenario (CCCMA_CGCM3, 



2070-2099). See text for procedure used to select bin sizes for each axis. Color intensity 
corresponds to area occupied by each climate combination. Due to the highly skewed 
distribution of areas occupied (from 1 to 24000 km2 for current climate), areas were log-
transformed before applying the color scheme.   
 
Fig. S7. Maps of mean annual temperature and total annual precipitation (log10 
transformed) for the 1971-2000 historical period (PRISM). Color breaks correspond to 
histogram bins in Fig. S6, illustrating geographic distribution of climates that are 
classified in the same bin for each variable.  
 
Fig. S8. Velocity (left) and direction (right) of climate change for temperature (A, D) and 
precipitation under the warmer-drier (B, E) and warmer-wetter (C, F) scenarios. 
Directions represent the direction of movement in space to offset projected changes in 
climate, and are shown using the compass wheel. 
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Fig. S1. (A) Mean annual temperature and (B) annual temperature seasonality (standard deviation of monthly means), both 
derived from monthly means averaged over historical period (1971-2000). 

 Ackerly et al., Fig. S1A,B  
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Fig. S1. (C) Total annual precipitation (log10) and (D) annual precipitation seasonality (coefficient of variation of monthly 
means), both derived from monthly means averaged over historical period (1971-2000). Data are from the PRISM interpolated 
climate database.

 Ackerly et al., Fig. S1C,D  
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Fig. S2. Change in (A) mean annual temperature and (B) temperature seasonality, averaged over 16 
GCMs, A1b scenario, for 2070-2099. See Fig. S1a, b for baseline values.

 Ackerly et al., Fig. S2  
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Fig. S3. Projected change in total annual 
precipitation for 16 GCMs, SRES A1b. 
Mean values averaged over the domain 
range from-140 to 272 mm. Ranking 
them in order we chose the 4th and 14th 
models to represent drier and wetter 
scenarios. Drier: gfdl_cm2_1.1, -119 mm; 
Wetter: cccma_cgcm3_1.1, +81 mm. We 
also used the corresponding temperature 
projections for these models

 Ackerly et al., Fig. S3  
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 Ackerly et al., Fig. S4A,B  

Fig. S4. Change in mean annual temperature for (A) GFDL and (B) CCCMA, A1b scenario, for 2070-2099. 
Temperature scale bars are same for Fig. S2A, and Fig. S4A, B.
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 Ackerly et al., Fig. S4C,D 

Fig. S4. Change in total annual precipitation for (C) GFDL (warmer-drier) and (D) CCCMA (warmer-wetter), 
A1b scenario, for 2070-2099. 
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 Ackerly et al., Fig. S5  

Fig. S5. Historical variability, measured as standard deviation of annual means from 1971-2000 for (A) mean annual 
temperature and (B) annual precipitation (log10 transformed). Mean (range) are 0.58 (0.38 – 1.03) for temperature and 0.15 
(0.088 – 0.326) for precipitation. 
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 Ackerly et al., Fig. S6  

Fig. S6. Two-dimensional histograms of climate space. A) 
current; B) warmer-drier scenario (GFDL_CM2, 2070-2099); C) 
warmer-wetter scenario (CCCMA_CGCM3, 2070-2099). See text 
for procedure used to select bin sizes for each axis. Color 
intensity corresponds to area occupied by each climate 
combination. Due to the highly skewed distribution of areas 
occupied (from 1 to 24000 km2 for current climate), areas were 
log-transformed before applying the color scheme. 



 Ackerly et al., Fig. S7  
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Fig. S7. Maps of mean annual temperature and total annual precipitation (log10 transformed) for the 1971-2000 historical 
period (PRISM). Color breaks correspond to histogram bins in Fig. S6, illustrating geographic distribution of climates that are 
classified in the same bin for each variable. 



 Ackerly et al., Fig. S8  

Fig. S8. Velocity (left) and direction (right) of climate change for temperature (A, D) and precipitation under the warmer-drier 
(B, E) and warmer-wetter (C, F) scenarios. Directions represent the direction of movement in space to offset projected 
changes in climate, and are shown using the compass wheel.


