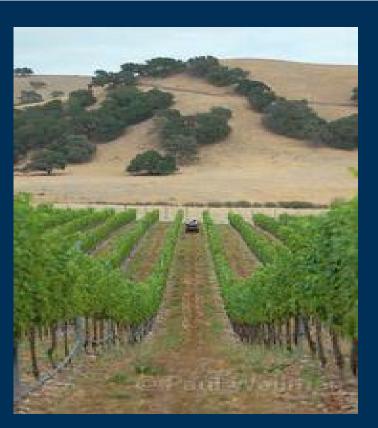
Climate change/land use change scenarios for assessing threats to ecosystem services on California rangelands

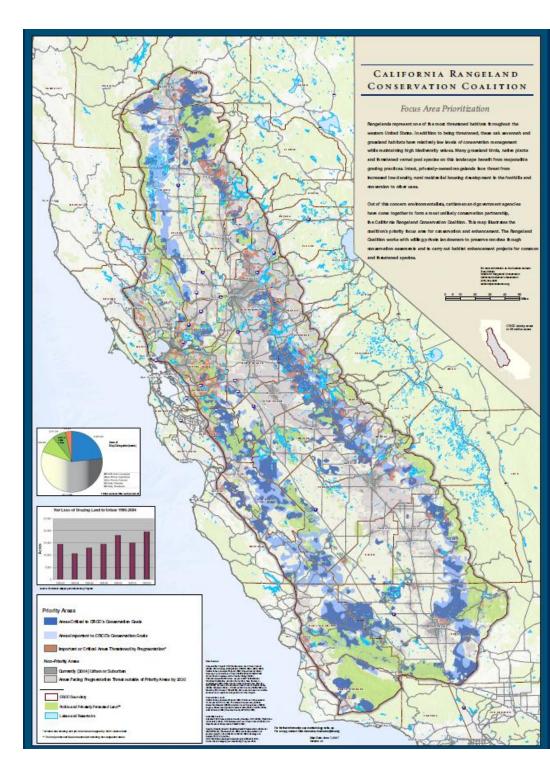
Pelayo Alvarez⁴, Kristin Byrd¹, Chris Soulard¹, Lorraine Flint², Frank Casey³, Ben Sleeter¹ and Terry Sohl⁵

¹USGS Western Geographic Science Center, Menlo Park, CA,
²USGS California Water Science Center, Sacramento, CA,
³USGS Science and Decisions Center, Reston, VA,
⁴Defenders of Wildlife, Sacramento, CA,
⁵USGS EROS Data Center, Sioux Falls, SD.

Ecosystem Services provided by Rangelands

- Food, fiber and fuel
- Wildlife habitat
- Water
- Carbon sequestration
- Adaptation to climate change
- Open space, cultural values





Integrated Threats to Rangelands

- In California 20,000 acres of rangelands are lost every year
- Privately owned
- Cattle ranching: low profits
- Low levels of protection

Land conversion and climate change lead to loss of grazing land, water availability, and altered species distribution

Rangeland Coalition Focus Area Map (TNC, 2007)

http://www.carangeland.org/focusarea.html

Dark blue: Critical Conservation Areas

(Privately-owned rangelands that have high biodiversity value and require conservation action in the next 2-10 years.)

Funded by California Landscape Conservation Cooperative

Project Goals

- Six spatially-explicit climate change/land use change scenarios from years 2000 2100 consistent with three IPCC emission scenarios and two climate models –
 A2, B1, and A1B and
 PCM (warm, wet future), GFDL (hot, dry future)
- Assess potential threats to rangeland ecosystem services
 - 1. wildlife habitat,
 - 2. water availability, (runoff/recharge) (Lorraine Flint and Alan Flint, USGS)
 - 3. carbon sequestration

Project Goals, continued

- 3. An economic analysis of scenarios to quantify economic costs and benefits and identify where ecosystem services can be optimized (Frank Casey, USGS)
- 4. A web-based visualization tool for resource managers to view and compare scenarios in a map format, and
- An outreach program that will target the Rangeland Coalition network to communicate how results can be applied to conservation and land management decisions. (Pelayo Alvarez, Defenders of Wildlife)

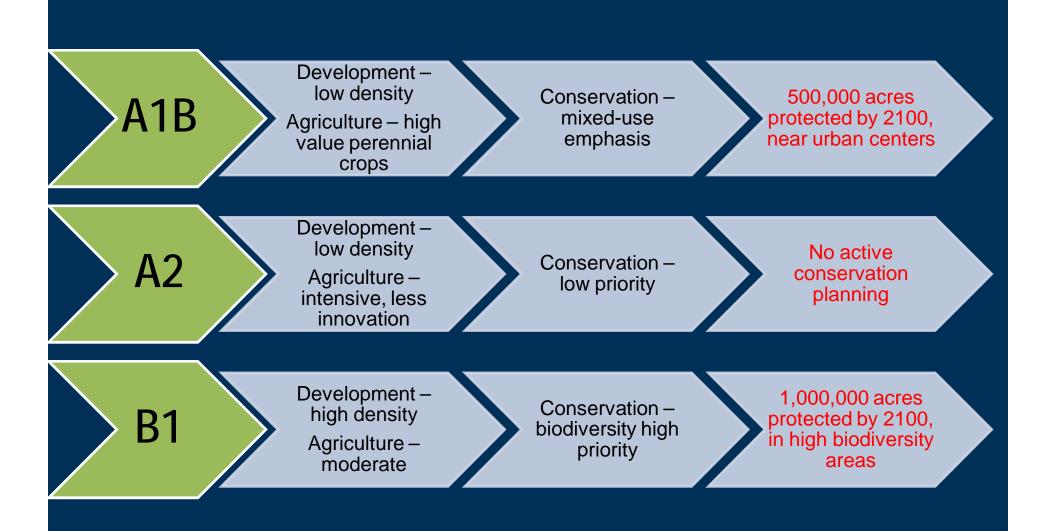
Driving Force Assumptions for the United States based on IPCC Emission Scenarios

(table adapted from Ben Sleeter, USGS)

	A2	A1B	B1	
DEMOGRAPHICS	High growth, sprawl	Medium growth, sprawl	Medium growth, densification	
ECONOMICS	Medium Income	Very High Income	High Income	
TECHNOLOGY	Low rate of innovation	Very High rate of innovation	High rate of innovation	
ENERGY	Fossil fuel intensive	Balanced between several sources	Rapid diffusion of "green" energy resources	
CLIMATE	VERY HOT temperature range: 3.4 °C; 2.0 – 5.4°C	HOT temperature range: 2.8 °C; 1.7 – 4.4 °C	WARM temperature range: 1.8 °C; 1.1 – 2.9°C	
ENVIRONMENTAL PROTECTION	Conservation lower priority	Mixed-use based conservation	Conservation high priority	

Scenario Narratives for CA Rangelands

Rancher's Focus Group, January 2012, Davis CA


Key Concerns about ranching future:

- Limited availability of grazing land for lease
- Fragmentation of grazing land
- Forage quality and quantity
- High start-up investment

Scenario Narratives for CA Rangelands — Alternative conservation plans

Integrated Scenarios

Three IPCC scenarios

A1B, A2, B1

Two climate models

PCM, GFDL

Land use/land cover change +

California Rangeland Conservation Coalition Focus Area Maps by scenario/year to 2100 at ~250 meter resolution

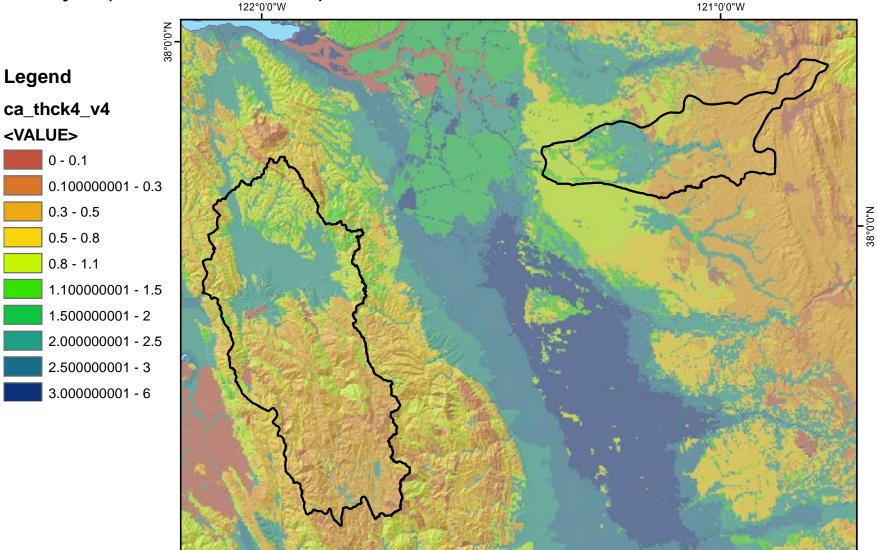
Climate/hydrology

decadal change

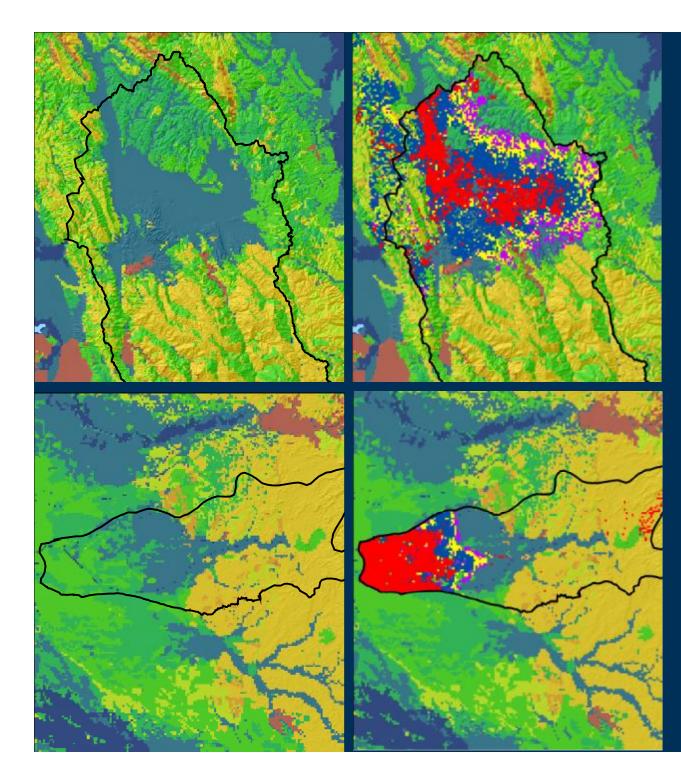
EPA Level III Eco-regions: Central Valley and Chaparral and Oak Woodlands

Case Study of Two Watersheds:

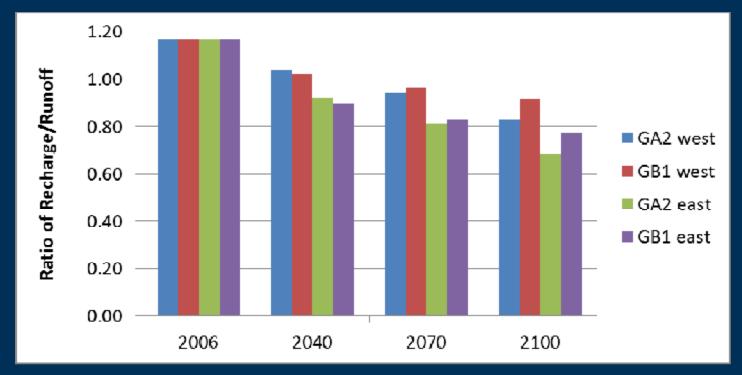
SF Bay-Alameda Creek


Calaveras-Mormon Slough

Habitat, Water, and Carbon

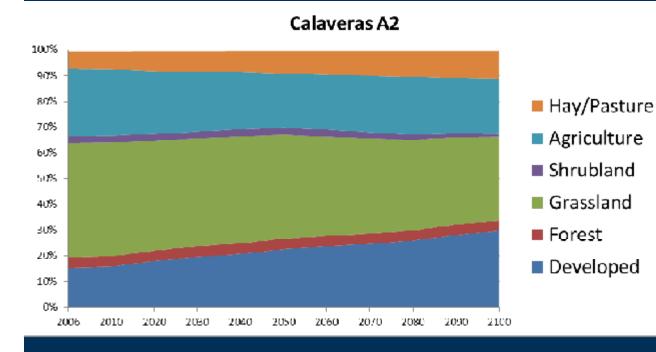


Soil water storage affected by porosity and depth – New soil thickness dataset – SSURGO county-level soil surveys (L. Flint, USGS)

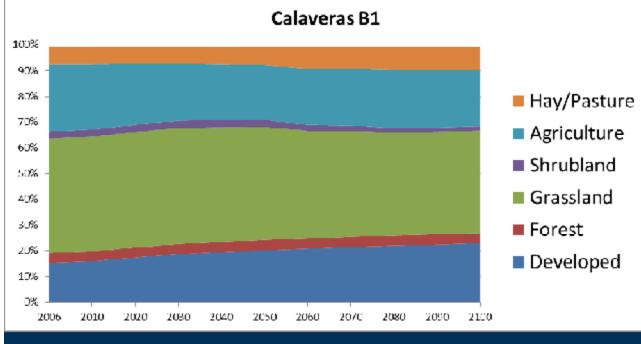

121°0'0"W

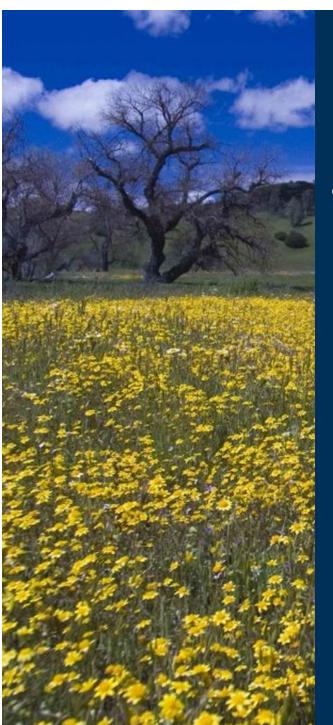
Alameda Creek: Development moves from deep to shallow soils 2006 - 2100

Calaveras: Development moves from shallow to deep soils 2006 - 2100


Ratio of Recharge to Runoff – More runoff in A2 Scenario, Calaveras Watershed

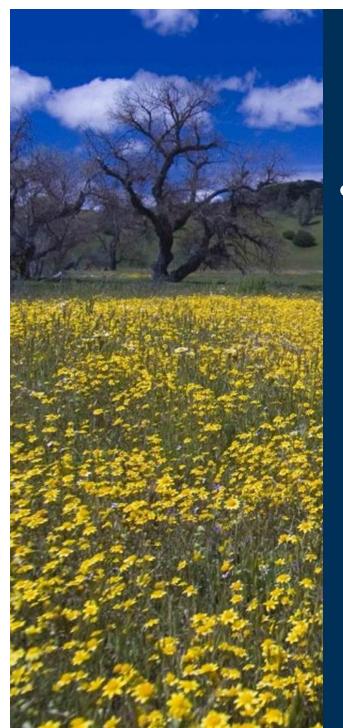
		Ratio (recharge/runoff)				
Basin	Scenario	2006	2040	2070	2100	
West	GA2	1.17	1.04	0.94	0.83	
	GB1	1.17	1.02	0.97	0.92	
East	GA2	1.17	0.92	0.81	0.69	
	GB1	1.17	0.89	0.83	0.77	




Calaveras Habitat Change

More grassland/shrub land conversion to agriculture in A2

Carbon?



Carbon

 Social value of carbon : avoided marginal damages from carbon emissions to a society as a whole, that is, of the avoided damage done by an additional ton of carbon released into the atmosphere. In our particular case, if that carbon were released as a result of land conversion" (Kroeger, 2012)

Carbon (preliminary)

 Over the estimated 5,200 of grassland lost in the Calaveras-Mormon Slough watershed during the 2006-2040 time period, the total social value of soil carbon is estimated to be about \$13.2 million.

Potential Applications/Users

A) Decision-making tool for:

- Agencies: Prioritization,
- Non-profits: RCDs, land trusts restoration, easements
- Others: Planners, legislators
- B) Research
- C) Outreach

Next Steps: Metrics and Economic Analysis for Decision Support

- Metrics at landscape and watershed level
- Quantify fragmentation of grazing land
- Change in bioclimatic distribution of oaks, grassland and shrubland
- Change in runoff, recharge and stream discharge
- On-line maps where changes in water availability and wildlife habitat coincide
- Economic analysis of scenarios to quantify costs and benefits to the CRCC focus area

Thank You!

Pelayo Alvarez⁴, Kristin Byrd¹, Chris Soulard¹, Lorraine Flint², Frank Casey³, Ben Sleeter¹ and Terry Sohl⁵

¹USGS Western Geographic Science Center, Menlo Park, CA,
²USGS California Water Science Center, Sacramento, CA,
³USGS Science and Decisions Center, Reston, VA,
⁴Defenders of Wildlife, Sacramento, CA,
⁵USGS EROS Data Center, Sioux Falls, SD.

